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R*, 

NOMENCLATURE 

specific heat at constant pressure; 
gravitational acceleration ; 
layer depth ; 
thermal conductivity of medium; 
permeability; 
molecular weight of gas; 
pressure; 
Rayleigh number, defined by equation (14); 
universal gas constant; 
time ; 
temperature ; 
velocity components; 
Cartesian coordinates. 

Greek symbols 
‘% thermal expansivity ; 
B9 isothermal compressibility ; 
r, applied temperature gradient; 
6 porosity ; 
P7 viscosity of fluid ; 
P? density of fluid. 

Subscripts 
A, adiabatic value ; 
c refers to fluid; 
m, refers to medium; 

9 steady state (hydrostatic distribution); 

s, value at surface z = 0. 

Superscript 
perturbation variable. 

INTRODUCTION 

MOST theoretical work on the onset ofconvection in a porous 
layer heated below has been done using the Boussinesq- 
Oberbeck approximation, according to which density 
differences are considered in the buoyancy term but otherwise 
the fluid properties are taken to be constant, and as a result 
the fluid is taken as being quasi-incompressible. A note- 
worthy exception is the paper by Straus and Schubert [l], who 
derived non-Boussinesq equations for a general fluid before 
concentrating on convection of water in a geothermal con- 
text. It appears that Saatdjian [2] is the first to explicitly 
consider a porous layer saturated with an ideal gas. 

The particular problem considered in ref. [Z] is the onset of 
convection in a medium bounded by two horizontal isother- 
mal impermeable planes, a problem which is analogous to the 
Rayleigh-Bknard -problem for a viscous fluid. For this 
Rayleigh-Darcy problem it is well known that the criterion 
for convection to occur with a Boussinesq fluid is that the 
Rayleigh number R exceeds the value 47~‘. Saatdjian calcu- 
lated critical values for R with an ideal gas. He found that they 
depended on his quantity R, = TJT,,, (where Tamb is the 

ambient temperature (300 K) and T, IS related to the average 
temperature in the layer T by r = T, + T,,,/2) and ranged 
from a value larger than 47r* to values smaller than 4~‘. These 
results would suggest that compressibility could provide 
either a stabilizing or destabilizing effect according to the 
value of TV This two-sided effect is surprising. Saatdjian 
explained thevalue higher than 4nZ as “due to the fact that the 
mixed mean temperature is higher than the average tempera- 
ture once convective movement appears. Thus, the real Ra, 
numbers are a bit below our tabulated values”. (A referee of 
the present paper noted the possibility that approximation of 
the reference density distribution by a first order polynomial 
could account for the small numerical discrepancy, if any.) 
That may be so, but the author suggests that the two-sided 
effect is probably an artifact of the scaling used by Saatdjian, 
who introduced Tambr I and P, as temperature, length and 
pressure reference parameters, respectively. Here, Tam,, is a 
fixed temperature (300 K), I is the thickness of the porous 
layer and P, is taken as pgl. However, in order for Saatdjian’s 
equations (6) and (7) (with obvious minor misprints cor- 
rected) to follow from equations (2) and (4) it is necessary to 
assume that Tamb = MP,/Rp, where M is the molecular 
weight of the fluid and R is the universal gas constant. We 
conclude that his equations are not properly determined, and 
as a consequence his results are invalid as they stand at 
present. 

It would not be difficult to amend his paper in this respect, 
but it suffers a more important defect in its failure to include in 
the energy equation [Saatdjian’s equation (3)] the contri- 
bution of the work done by the pressure during changes in 
volume. As we shall see below, this contribution is of prime 
importance. 

The spadework for a correct theory has already been done 
by Straus and Schubert, but since an ideal gas differs from 
water in some important respects it is worthwhile to sketch 
the reformulation of the theory for the case of the gas. 

GENERALTHEORY 

The governing equations expressing conservation of mass, 
momentum and energy may be written (essentially as in [l]) 

&I/&) + v (pll) = 0, (1) 

-VP - (pclK)u + pg = 0, (2) 

C?T 
(PC,), at + (PC,),~ VT 

_f(!!&%+“.vp>=kv~T. (3) 

The equation of state for an ideal gas is 

p = pR* TIM. (4) 

Equation (2) expresses Darcy’s law, and is valid for 
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sufficiently small seepage velocity u. In equation (3) viscous 
dissipation has been neglected. It is convenient to introduce 
the thermal expansivity a and isothermal compressibility fi 
defined by 

a = (- VP) [(%/aV,l and P = (VP) CQ/ap),l. (5) 

For an ideal gas we have a = l/T and p = l/p. 
We take Cartesian coordinates (x, y, z) with the z-axis in the 

direction of g. We suppose that the upper surface (at z = 0) is 
maintained at temperature T, and the lower surface (at z = 
H) is maintained at temperature T, + TH. Thus r denotes 
the imposed temperature gradient. We assume that k is 
constant. The steady state solution (denoted by subscript 
zero) is then given by the hydrostatic equations 

and 

u0 = 0, To = Ts + l-z, dp,/dz = pOg. (6) 

We consider non-oscillatory 2-dim. small disturbances to 
the static solution. We denote the disturbed variables by 

u = (u,O,w), p’ = p - PO, T’ = T - T”, p’ = p - po. (8) 

These are related by the equations 

where 

The boundary conditions are 

w = 0, T’= 0 at z = 0 and z = H. 

(9) 

(10) 

(11) 

(12) 

(13) 

The standard procedure is now to put equations (9)-(13) in 
non-dimensional form, separate the variables by supposing 
that all the perturbation variables are periodic in x with some 
wavenumber, and then eliminate the pressure and the x- 
component of the velocity. One then has a fourth-order 
differential equation and four boundary conditions. The 
eigenvalues of this system can then be found using standard 
methods. (See [l] and the references contained therein.) The 
Rayleigh-Darcy number R defined by 

R= 
gccr&KHZ 

pk 
(14) 

(with quantitiesevaluated at some suitable reference tempera- 
ture such as the surface temperature T,) is then minimized as a 
function of the wavenumber. The minimum value of R is the 
critical value R, which must be exceeded for convection to 
occur. 

In the BoussineseOberbeck approximation the term 
-a,p,T’ for p’ is retained, but otherwise a,, and fl, are taken 
as zero and p,,, C,,,, T,,, p0 are regarded as constants. One then 
finds that R, = 4~‘. As a second approximation one can 

retain the term -a,T,g in equation (lo), the LHS of which 
can then be written as pOC,,, (r - rA)w, where rA is the 
adiabatic gradient g/C,,,. If one defines RA analogously to R 
but with r replaced by rA, then the critical Rayleigh number 
R, is given by 

R, = 4n= + R,. 

Thus on this approximation the effect of compressibility is 
stabilizing. An analogous result for the Rayleigh-Btnard 
problem was first derived by Jeffreys [S]. 

In the general case, with all the terms in equations (9)-(12) 
retained, a detailed calculation is required, and we may refer 
to ref. [l]. For the case of an ideal gas the criterion for 
convection depends on AT/T and PpgH (evaluated at the 
surface) as well as on R and R,. When some appropriate 
experimental data is available it will be worthwhile to make 
the calculation, but in the meantime we can obtain qualitative 
predictions without recourse to a computer. 

A major difference for convection in a porous medium 
saturated with an ideal gas, from that with water, results from 
the fact that whereas r increases with increase of T for the case 
of water, the opposite occurs for the case of a gas. The 
dominant effect of a decrease of a is to produce a stabilizing 
effect, since the buoyancy force driving the convection is 
directly proportional to a. Again, for a gas, the adiabatic 
temperature gradient increases slightly with T (since C, 
decreases), and this produces a stabilizing effect. Finally, the 
viscosity of a gas increases with T, leading to a further 
stabilizing effect. We conclude that, for the case of an ideal 
gas, all the important non-Boussinesq effects tend to be 
stabilizing in comparison with the situation for a Boussinesq 
fluid with properties measured at the temperature of the 
cooler boundary. 

CONCLUSION 

We have corrected the theory presented by Saatdjian [2], 
and have applied the theory formulated by Straus and 
Schubert [l] to obtain a criterion for the onset of convection 
in a horizontal layer of a porous medium saturated by an ideal 
gas. The main effect of compressibility is that the difference r 
_ rA, between the applied temperature gradient r and the 
adiabatic temperature gradient rA, replaces r in the usual 
criterion in which compressibility is ignored. Other non- 
Boussinesq effects cause the gas-filled medium to be more 
stable than would be predicted if the usual Boussinesq 
approximation was made and fluid properties at the tempera- 
ture of the cooler boundary were taken in calculating the 
Rayleigh number. 
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